Scheduling Design with Unknown Execution Time Distributions or Modes

نویسندگان

  • Robert Glaubius
  • Terry Tidwell
  • Christopher Gill
  • William D. Smart
چکیده

Open soft real-time systems, such as mobile robots, experience unpredictable interactions with their environments and yet must respond both adaptively and with reasonable temporal predictability. Because of the uncertainty inherent in such interactions, many of the assumptions of the real-time scheduling techniques traditionally used to ensure predictable timing of system actions do not hold in those environments. In previous work we have developed novel techniques for scheduling policy design where up-front knowledge of execution time distributions can be used to produce both compact representations of resource utilization state spaces and efficient optimal scheduling policies over those state spaces. This paper makes two main contributions beyond our previous work, to the state of the art in scheduling open soft real-time systems: (1) it shows how to relax the assumption that the entire distribution of execution times is known up front, to allow online learning of an execution time distribution during system run-time; and (2) it shows how to relax the assumption that the execution time of a system action can be characterized by a single distribution, to accommodate different execution time distributions for an action being taken in one of multiple modes. Each of these contributions allows a wider range of system actions to be scheduled adaptively and with Notes: On-line version of paper submitted to RTSS 2009, with full proof in Appendix A. Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 Scheduling Design with Unknown Execution Time Distributions or Modes Robert Glaubius, Terry Tidwell, Christopher Gill, and William D. Smart {rlg1,ttidwell, cdgill, wds}@cse.wustl.edu Department of Computer Science and Engineering Washington University, St. Louis Abstract— Open soft real-time systems, such as mobile robots, experience unpredictable interactions with their environments and yet must respond both adaptively and with reasonable temporal predictability. Because of the uncertainty inherent in such interactions, many of the assumptions of the real-time scheduling techniques traditionally used to ensure predictable timing of system actions do not hold in those environments. In previous work we have developed novel techniques for scheduling policy design where up-front knowledge of execution time distributions can be used to produce both compact representations of resource utilization state spaces and efficient optimal scheduling policies over those state spaces. This paper makes two main contributions beyond our previous work, to the state of the art in scheduling open soft realtime systems: (1) it shows how to relax the assumption that the entire distribution of execution times is known up front, to allow online learning of an execution time distribution during system run-time; and (2) it shows how to relax the assumption that the execution time of a system action can be characterized by a single distribution, to accommodate different execution time distributions for an action being taken in one of multiple modes. Each of these contributions allows a wider range of system actions to be scheduled adaptively and with temporal predictability, which increases the applicability of our approach to even more general classes of open soft real-time systems. Open soft real-time systems, such as mobile robots, experience unpredictable interactions with their environments and yet must respond both adaptively and with reasonable temporal predictability. Because of the uncertainty inherent in such interactions, many of the assumptions of the real-time scheduling techniques traditionally used to ensure predictable timing of system actions do not hold in those environments. In previous work we have developed novel techniques for scheduling policy design where up-front knowledge of execution time distributions can be used to produce both compact representations of resource utilization state spaces and efficient optimal scheduling policies over those state spaces. This paper makes two main contributions beyond our previous work, to the state of the art in scheduling open soft realtime systems: (1) it shows how to relax the assumption that the entire distribution of execution times is known up front, to allow online learning of an execution time distribution during system run-time; and (2) it shows how to relax the assumption that the execution time of a system action can be characterized by a single distribution, to accommodate different execution time distributions for an action being taken in one of multiple modes. Each of these contributions allows a wider range of system actions to be scheduled adaptively and with temporal predictability, which increases the applicability of our approach to even more general classes of open soft real-time systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints

One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...

متن کامل

An Effective Task Scheduling Framework for Cloud Computing using NSGA-II

Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...

متن کامل

Developing Robust Project Scheduling Methods for Uncertain Parameters

A common problem arising in project management is the fact that the baseline schedule is often disrupted during the project execution because of uncertain parameters. As a result, project managers are often unable to meet the deadline time of the milestones. Robust project scheduling is an effective approach in case of uncertainty. Upon adopting this approach, schedules are protected against po...

متن کامل

A New Bi-Objective Model for a Multi-Mode Resource-Constrained Project Scheduling Problem with Discounted Cash Flows and four Payment Models

The aim of a multi-mode resource-constrained project scheduling problem (MRCPSP) is to assign resource(s) with the restricted capacity to an execution mode of activities by considering relationship constraints, to achieve pre-determined objective(s). These goals vary with managers or decision makers of any organization who should determine suitable objective(s) considering organization strategi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016